玖叶教程网

前端编程开发入门

BlockingQueue与Condition原理解析

我在前段时间写了一篇关于AQS源码解析的文章AbstractQueuedSynchronizer超详细原理解析 [链接见文末],在文章里边我说JUC包中的大部分多线程相关的类都和AQS相关,今天我们就学习一下依赖于AQS来实现的阻塞队列BlockingQueue的实现原理。本文中的源码未加说明即来自于以ArrayBlockingQueue。

阻塞队列

相信大多数同学在学习线程池时会了解阻塞队列的概念,熟记各种类型的阻塞队列对线程池初始化的影响。当从阻塞队列获取元素但是队列为空时,当前线程会阻塞直到另一个线程向阻塞队列中添加一个元素;类似的,当向一个阻塞队列加入元素时,如果队列已经满了,当前线程也会阻塞直到另外一个线程从队列中读取一个元素。阻塞队列一般都是先进先出的,用来实现生产者和消费者模式。当发生上述两种情况时,阻塞队列有四种不同的处理方式,这四种方式分别为抛出异常,返回特殊值(null或在是false),阻塞当前线程直到执行结束,最后一种是只阻塞固定时间,到时后还无法执行成功就放弃操作。这些方法都总结在下边这种表中了。

我们就只分析put和take方法。

put和take函数

我们都知道,使用同步队列可以很轻松的实现生产者-消费者模式,其实,同步队列就是按照生产者-消费者的模式来实现的,我们可以将put函数看作生产者的操作,take是消费者的操作。

我们首先看一下ArrayListBlock的构造函数。它初始化了put和take函数中使用到的关键成员变量,分别是ReentrantLock和Condition。

public ArrayBlockingQueue(int capacity, boolean fair) {
 this.items = new Object[capacity];
 lock = new ReentrantLock(fair);
 notEmpty = lock.newCondition();
 notFull = lock.newCondition();
}

ReentrantLock是AQS的子类,其newCondition函数返回的Condition接口实例是定义在AQS类内部的ConditionObject实现类。它可以直接调用AQS相关的函数。

put函数会在队列末尾添加元素,如果队列已经满了,无法添加元素的话,就一直阻塞等待到可以加入为止。函数的源码如下所示。

public void put(E e) throws InterruptedException {
 checkNotNull(e);
 final ReentrantLock lock = this.lock;
 lock.lockInterruptibly(); //先获得锁
 try {
 while (count == items.length) 
 //如果队列满了,就NotFull这个Condition对象上进行等待
 notFull.await();
 enqueue(e);
 } finally {
 lock.unlock();
 }
}
private void enqueue(E x) {
 final Object[] items = this.items;
 items[putIndex] = x;
 //这里可以注意的是ArrayBlockingList实际上使用Array实现了一个环形数组,
 //当putIndex达到最大时,就返回到起点,继续插入,
 //当然,如果此时0位置的元素还没有被取走,
 //下次put时,就会因为cout == item.length未被阻塞。
 if (++putIndex == items.length)
 putIndex = 0;
 count++;
 //因为插入了元素,通知等待notEmpty事件的线程。
 notEmpty.signal();
} 

我们会发现put函数使用了wait/notify的机制。与一般生产者-消费者的实现方式不同,同步队列使用ReentrantLock和Condition相结合的先获得锁,再等待的机制;而不是Synchronized和Object.wait的机制。这里的区别我们下一节再详细讲解。

看完了生产者相关的put函数,我们再来看一下消费者调用的take函数。take函数在队列为空时会被阻塞,一直到阻塞队列加入了新的元素。

public E take() throws InterruptedException {
 final ReentrantLock lock = this.lock;
 lock.lockInterruptibly();
 try {
 while (count == 0)
 //如果队列为空,那么在notEmpty对象上等待,
 //当put函数调用时,会调用notEmpty的notify进行通知。
 notEmpty.await();
 return dequeue();
 } finally {
 lock.unlock();
 }
}
private E dequeue() {
 E x = (E) items[takeIndex];
 items[takeIndex] = null; //取出takeIndex位置的元素
 if (++takeIndex == items.length)
 //如果到了尾部,将指针重新调整到头部
 takeIndex = 0;
 count--;
 ....
 //通知notFull对象上等待的线程
 notFull.signal();
 return x;
}

await操作

我们发现ArrayBlockingList并没有使用Object.wait,而是使用的Condition.await,这是为什么呢?其中又有哪些原因呢?

Condition对象可以提供和Object的wait和notify一样的行为,但是后者必须先获取synchronized这个内置的monitor锁,才能调用;而Condition则必须先获取ReentrantLock。这两种方式在阻塞等待时都会将相应的锁释放掉,但是Condition的等待可以中断,这是二者唯一的区别。

我们先来看一下Condition的wait函数,wait函数的流程大致如下图所示。

wait函数主要有三个步骤。一是调用addConditionWaiter函数,在condition wait queue队列中添加一个节点,代表当前线程在等待一个消息。然后调用fullyRelease函数,将持有的锁释放掉,调用的是AQS的函数,不清楚的同学可以查看本篇开头的介绍的文章。最后一直调用isOnSyncQueue函数判断节点是否被转移到sync queue队列上,也就是AQS中等待获取锁的队列。如果没有,则进入阻塞状态,如果已经在队列上,则调用acquireQueued函数重新获取锁。

public final void await() throws InterruptedException {
 if (Thread.interrupted())
 throw new InterruptedException();
 //在condition wait队列上添加新的节点
 Node node = addConditionWaiter();
 //释放当前持有的锁
 int savedState = fullyRelease(node);
 int interruptMode = 0;
 //由于node在之前是添加到condition wait queue上的,现在判断这个node
 //是否被添加到Sync的获得锁的等待队列上,Sync就是AQS的子类
 //node在condition queue上说明还在等待事件的notify,
 //notify函数会将condition queue 上的node转化到Sync的队列上。
 while (!isOnSyncQueue(node)) {
 //node还没有被添加到Sync Queue上,说明还在等待事件通知
 //所以调用park函数来停止线程执行
 LockSupport.park(this);
 //判断是否被中断,线程从park函数返回有两种情况,一种是
 //其他线程调用了unpark,另外一种是线程被中断
 if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
 break;
 }
 //代码执行到这里,已经有其他线程调用notify函数,或则被中断,该线程可以继续执行,但是必须先
 //再次获得调用await函数时的锁.acquireQueued函数在AQS文章中做了介绍.
 if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
 interruptMode = REINTERRUPT;
  ....
}
final int fullyRelease(Node node) {
 //AQS的方法,当前已经在锁中了,所以直接操作
 boolean failed = true;
 try {
 int savedState = getState();
 //获取state当前的值,然后保存,以待以后恢复
 // release函数是AQS的函数,不清楚的同学请看开头介绍的文章。 
 if (release(savedState)) {
 failed = false;
 return savedState;
 } else {
 throw new IllegalMonitorStateException();
 }
 } finally {
 if (failed)
 node.waitStatus = Node.CANCELLED;
 }
}
private int checkInterruptWhileWaiting(Node node) {
 //中断可能发生在两个阶段中,一是在等待signa时,另外一个是在获得signal之后
 return Thread.interrupted() ?
 (transferAfterCancelledWait(node) ? THROW_IE : REINTERRUPT) :
 0;
}
final boolean transferAfterCancelledWait(Node node) {
 //这里要和下边的transferForSignal对应着看,这是线程中断进入的逻辑.那边是signal的逻辑
 //两边可能有并发冲突,但是成功的一方必须调用enq来进入acquire lock queue中.
 if (compareAndSetWaitStatus(node, Node.CONDITION, 0)) {
 enq(node);
 return true;
 }
 //如果失败了,说明transferForSignal那边成功了,等待node 进入acquire lock queue
 while (!isOnSyncQueue(node))
 Thread.yield();
 return false;
}

signal操作

signal函数将condition wait queue队列中队首的线程节点转移等待获取锁的sync queue队列中。这样的话,wait函数中调用isOnSyncQueue函数就会返回true,导致wait函数进入最后一步重新获取锁的状态。

我们这里来详细解析一下condition wait queue和sync queue两个队列的设计原理。condition wait queue是等待消息的队列,因为阻塞队列为空而进入阻塞状态的take函数操作就是在等待阻塞队列不为空的消息。而sync queue队列则是等待获取锁的队列,take函数获得了消息,就可以运行了,但是它还必须等待获取锁之后才能真正进行运行状态。

signal函数的示意图如下所示。

signal函数其实就做了一件事情,就是不断尝试调用transferForSignal函数,将condition wait queue队首的一个节点转移到sync queue队列中,直到转移成功。因为一次转移成功,就代表这个消息被成功通知到了等待消息的节点。

public final void signal() {
 if (!isHeldExclusively())
 //如果当前线程没有获得锁,抛出异常
 throw new IllegalMonitorStateException();
 Node first = firstWaiter;
 if (first != null)
 //将Condition wait queue中的第一个node转移到acquire lock queue中.
 doSignal(first);
}
private void doSignal(Node first) {
 do {
   //由于生产者的signal在有消费者等待的情况下,必须要通知
 //一个消费者,所以这里有一个循环,直到队列为空
 //把first 这个node从condition queue中删除掉
 //condition queue的头指针指向node的后继节点,如果node后续节点为null,那么也将尾指针也置为null
 if ( (firstWaiter = first.nextWaiter) == null)
 lastWaiter = null;
 first.nextWaiter = null;
 } while (!transferForSignal(first) &&
 (first = firstWaiter) != null);
 //transferForSignal将node转而添加到Sync的acquire lock 队列
}
final boolean transferForSignal(Node node) {
 //如果设置失败,说明该node已经被取消了,所以返回false,让doSignal继续向下通知其他未被取消的node
 if (!compareAndSetWaitStatus(node, Node.CONDITION, 0))
 return false;
 //将node添加到acquire lock queue中.
 Node p = enq(node);
 int ws = p.waitStatus;
 //需要注意的是这里的node进行了转化
 //ws>0代表canceled的含义所以直接unpark线程
 //如果compareAndSetWaitStatus失败,所以直接unpark,让线程继续执行await中的
 //进行isOnSyncQueue判断的while循环,然后进入acquireQueue函数.
 //这里失败的原因可能是Lock其他线程释放掉了锁,同步设置p的waitStatus
 //如果compareAndSetWaitStatus成功了呢?那么该node就一直在acquire lock queue中
 //等待锁被释放掉再次抢夺锁,然后再unpark
 if (ws > 0 || !compareAndSetWaitStatus(p, ws, Node.SIGNAL))
 LockSupport.unpark(node.thread);
 return true;
}

后记

后边一篇文章主要讲解如何自己使用AQS来创建符合自己业务需求的锁,请大家继续关注我的文章啦.一起进步偶。

https://mp.weixin.qq.com/s?__biz=MzU2MDYwMDMzNQ==&mid=2247483716&idx=1&sn=22e5160b1fb1068b262d1b0f4fcfc0a0&chksm=fc04c524cb734c327b823acd2cc3ea3ef8620ab2c6c0c1dc1ac6545904f1c3259afd4f2e7450&token=1555684417&lang=zh_CN#rd

发表评论:

控制面板
您好,欢迎到访网站!
  查看权限
网站分类
最新留言